SPECIMEN MATERIAL

A-level CHEMISTRY (7405/3)

Paper 3

Specimen 2015

Session

Time allowed: 2 hours

Materials

For this paper you must have:

- the Data Booklet, provided as an insert
- a ruler
- a calculator.

Instructions

- Answer **all** questions.
- Show all your working.

Information

• The maximum mark for this paper is 90.

Please write clearly, in block capitals, to allow character computer recognition.			
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signatur	re]

	Section A
	Answer all questions in this section.
1	Ethanol can be oxidised by acidified potassium dichromate(VI) to ethanoic acid in a two-step process.
01.1	In order to ensure that the oxidation to ethanoic acid is complete, the reaction is carried out under reflux.
	Describe what happens when a reaction mixture is refluxed and why it is necessary, in
	[3 marks]
01.2	Write a half-equation for the overall oxidation of ethanol into ethanoic acid. [1 mark]

01.3	The Tab l	boiling points of the o l e 1 .	rganic compound	s in a reaction mix	xture are shown ir	1
			Tab	le 1		
		Compound	ethanol	ethanal	ethanoic acid	
		Boiling point / °C	78	21	118	
	Use of th woul appa	these data to describe ese three compounds d use and how you we aratus can be either a	e how you would o . Include in your a ould minimise the description in wor	obtain a sample o answer a descript loss of ethanal. ` rds or a labelled s	f ethanal from a n ion of the apparat Your description c ketch. [5	hixture tus you of the marks]
		Que	estion 1 continue	es on the next pa	ige	

01.4	Use your knowledge of structure and bonding to explain why it is possible to separate ethanal in this way. [2 marks]
0 1 . 5	A student obtained a sample of a liquid using the apparatus in Question 1.3 . Describe how the student could use chemical tests to confirm that the liquid contained
	ethanal and did not contain ethanoic acid. [5 marks]

2	Ethanol and ethanoic acid react reversibly to form ethyl ethanoate and water ac to the equation:	cording
	$CH_3COOH + CH_3CH_2OH \rightleftharpoons CH_3COOCH_2CH_3 + H_2O$	
	A mixture of 8.00 × 10^{-2} mol of ethanoic acid and 1.20 × 10^{-1} mol of ethanol is a to reach equilibrium at 20 °C.	allowed
	 The equilibrium mixture is placed in a graduated flask and the volume made 250 cm³ with distilled water. A 10.0 cm³ sample of this equilibrium mixture is titrated with sodium hydrox added from a burette. 	e up to (ide
	 The ethanoic acid in this sample reacts with 3.20 cm³ of 2.00 × 10⁻¹ mol dn sodium hydroxide solution. 	n ⁻³
02.1	Calculate the value for K_c for the reaction of ethanoic acid and ethanol at 20 °C. Give your answer to the appropriate number of significant figures.	markal
	[O	iiidi kəj
	<i>K</i> –	
	Λ _c =	
	Question 2 continues on the next page	

		Table 2				
		Rough	1	2	3	
	Final burette reading / cm ³	4.60	8.65	12.85	16.80	
	Initial burette reading / cm ³	0.10	4.65	8.65	12.85	
-	Titre / cm ³					-
L						-
) 2	2 Complete Table 2 .					[1 marl
2	3 Coloulate the mean titre and	liuotify your	abaiaa of ti	troo		
<u>, z</u> . [i justily your		lies.		[2 mark
	Calculation					
			Mean titre	. =		C
	lustification			·		0
) 2	4 The pH ranges of three indic	ators are sh	own in Tab	le 3.		
) 2 . [4 The pH ranges of three indic	ators are sh Tat	own in Tab ble 3	le 3.	٦	
) 2	The pH ranges of three indic Indicator	cators are sh Tat	own in Tab ble 3 pH range	le 3.		
D 2	The pH ranges of three indic Indicator Bromocresol green	cators are sh	own in Tab ole 3 pH range 3.8–5.4	le 3.	_	
) 2	The pH ranges of three indic Indicator Bromocresol green Bromothymol blue Thymol blue	cators are sh	own in Tab ole 3 pH range 3.8–5.4 6.0–7.6	le 3.	_	
02.	The pH ranges of three indic Indicator Bromocresol green Bromothymol blue Thymol blue	cators are sh	own in Tab pH range 3.8–5.4 6.0–7.6 8.0–9.6	le 3.		
) 2 . [The pH ranges of three indic Indicator Bromocresol green Bromothymol blue Thymol blue Select from Table 3 a suitab	cators are sh	own in Tab pH range 3.8–5.4 6.0–7.6 8.0–9.6 for the titrat	le 3.	oic acid with	h
0 2 .	4 The pH ranges of three indic Indicator Bromocresol green Bromothymol blue Thymol blue Select from Table 3 a suitable Sodium hydroxide.	cators are sh	own in Tab pH range 3.8–5.4 6.0–7.6 8.0–9.6 for the titrat	le 3.	oic acid with	h

02.5	The error in the mean titre for this experiment is ± 0.15 cm ³ .
	Calculate the percentage error in this mean titre.
	נו וומואן
	Percentage error = %
02.6	Suggest how, using the same mass of ethanoic acid, the experiment could be improved to reduce the percentage error.
	[2 marks]
	Turn over for the next question

3	A peptide is hydrolysed to form a solution containing a mixture of amino acids. This mixture is then analysed by silica gel thin-layer chromatography (TLC) using a toxic solvent. The individual amino acids are identified from their R _f values.
	Part of the practical procedure is given below.
03.1	 Part of the practical procedure is given below. 1. Wearing plastic gloves to hold a TLC plate, draw a pencil line 1.5 cm from the bottom of the plate. 2. Use a capillary tube to apply a very small drop of the solution of amino acids to the mid-point of the pencil line. 3. Allow the spot to dry completely. 4. In the developing tank, add the developing solvent to a depth of not more than 1 cm. 5. Place your TLC plate in the developing tank. 6. Allow the developing solvent to rise up the plate to the top. 7. Remove the plate and quickly mark the position of the solvent front with a pencil. 8. Allow the plate to dry in a fume cupboard. Parts of the procedure are in bold text. For each of these parts, consider whether it is essential and justify your answer. [4 marks]
L	

Г

03.2	Outline the steps needed to locate the positions of the amino acids on the T and to determine their R_f values.	LC plate
		[4 marks]
03.3	Explain why different amino acids have different R_f values.	[2 marke]

4 Ethanedioic acid is a weak acid. Ethanedioic acid acts, initially, as a monoprotic acid. HO OH 04.1 Use the concept of electronegativity to justify why the acid strengths of ethanedioic acid and ethanoic acid are different. [6 marks]

04.2	A buffer solution is made by adding 6.00×10^{-2} mol of sodium hydroxide to a containing 1.00×10^{-1} mol of ethanedioic acid ($H_2C_2O_4$). Assume that the sodium hydroxide reacts as shown in the following equation in this buffer solution, the ethanedioic acid behaves as a monoprotic acid.	a solution
	$H_2C_2O_4(aq) + OH^-(aq) \longrightarrow HC_2O_4^-(aq) + H_2O(I)$	
	The dissociation constant K_a for ethanedioic acid is 5.89 × 10 ⁻² mol dm ⁻³ .	
	Calculate a value for the pH of the buffer solution. Give your answer to the appropriate number of significant figures.	[5 marks]
	pH =	
	Question 4 continues on the next page	

04.3	In a titration, the end point was reached when 25.0 cm ³ of an acidified solution containing ethanedioic acid reacted with 20.20 cm ³ of 2.00×10^{-2} mol dm ⁻³ potassium manganate(VII) solution.	1
	Deduce an equation for the reaction that occurs and use it to calculate the orig concentration of the ethanedioic acid solution.	jinal
	[4	4 marks]
	Equation	
	Calculation	
	Original concentration =r	mol dm ⁻³

5	A sample of ethanedioic acid was treated with an excess of an unknown alcohol in the presence of a strong acid catalyst. The products of the reaction were separated and analysed in a time of flight (TOF) mass spectrometer. Two peaks were observed at $m/z = 104$ and 118.
05.1	Identify the species responsible for the two peaks. [2 marks]
0 5 . 2	Outline how the TOF mass spectrometer is able to separate these two species to give two peaks.

Answer all questions in this section. Only one answer per question is allowed. For each answer completely fill in the circle alongside the appropriate answer. CORRECT METHOD • WRONG METHODS • • • • • • • • • • • • • • • • • • •				Section	В	
Only one answer per question is allowed. For each answer completely fill in the circle alongside the appropriate answer. CORRECT METHOD wrong METHODS If you want to change your answer you must cross out your original answer as shown. If If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. If If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. If If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. If If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. If If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. If If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. If If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. If If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. If If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. If If you wish to return to an answer previously crossed out, ring the answer as shown. If If you wish to return to an answer			An	swer all questions	in this section.	
If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. (1 ma A He ⁺ (g) \longrightarrow He ²⁺ (g) + e ⁻ B Li(g) \longrightarrow Li ⁺ (g) + e ⁻ C Mg ⁺ (g) \longrightarrow Mg ²⁺ (g) + e ⁻ D N(g) \longrightarrow N ⁺ (g) + e ⁻ D N(g) \longrightarrow N ⁺ (g) + e ⁻ (1 ma A sample of 2.18 g of oxygen gas has a volume of 1870 cm ³ at a pressure of 101 kF What is the temperature of the gas? The gas constant is $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$. A 167 K B 334 K C 668 K D 334 000 K	Only one For each CORRECT M If you wa	answer answer ETHOD	per question is a completely fill in wRONG METH ange your answe	allowed. the circle alongsid ops 🗴 💿 🚖	e the appropriate answer	s shown.
D 6Which change requires the largest amount of energy?[1 maA $He^+(g) \longrightarrow He^{2+}(g) + e^ \bigcirc$ B $Li(g) \longrightarrow Li^+(g) + e^ \bigcirc$ C $Mg^+(g) \longrightarrow Mg^{2+}(g) + e^ \bigcirc$ D $N(g) \longrightarrow N^+(g) + e^ \bigcirc$ D $N(g) \longrightarrow N^+(g) + e^ \bigcirc$ D $R(g) \longrightarrow N^+(g) + e^ \bigcirc$ D $R(g) \longrightarrow N^+(g) + e^ \bigcirc$ D A sample of 2.18 g of oxygen gas has a volume of 1870 cm³ at a pressure of 101 kFWhat is the temperature of the gas? The gas constant is $R = 8.31 J K^{-1} mol^{-1}$.[1 maA $167 K$ \bigcirc B $334 K$ \bigcirc C $668 K$ \bigcirc D $334 000 K$ \bigcirc	If you wis as showr	ah to retu	irn to an answer	previously crossed	l out, ring the answer you	I now wish to select
A $He^{+}(g) \longrightarrow He^{2+}(g) + e^{-}$ B $Li(g) \longrightarrow Li^{+}(g) + e^{-}$ C $Mg^{+}(g) \longrightarrow Mg^{2+}(g) + e^{-}$ D $N(g) \longrightarrow N^{+}(g) + e^{-}$ D $N(g) \longrightarrow N^{+}(g) + e^{-}$ Mhat is the temperature of the gas? The gas constant is $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$. [1 mathematical A 167 K B 334 K C 668 K D 334 000 K C	0 6	Whic	ch change requir	res the largest amo	unt of energy?	[1 ma
B Li(g) \longrightarrow Li ⁺ (g) + e ⁻ Image: C Mg ⁺ (g) \longrightarrow Mg ²⁺ (g) + e ⁻ Image: C D N(g) \longrightarrow N ⁺ (g) + e ⁻ Image: C Image: C Image: C D 7 A sample of 2.18 g of oxygen gas has a volume of 1870 cm ³ at a pressure of 101 kF What is the temperature of the gas? The gas constant is $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$. Image: C A 167 K Image: C Image: C Image: C B 334 K Image: C Image: C Image: C D 334 000 K Image: C Image: C Image: C		Α	He⁺(g) —	\rightarrow He ²⁺ (g) + e ⁻	0	
C $Mg^+(g) \longrightarrow Mg^{2+}(g) + e^-$ D $N(g) \longrightarrow N^+(g) + e^-$ A sample of 2.18 g of oxygen gas has a volume of 1870 cm ³ at a pressure of 101 kF What is the temperature of the gas? The gas constant is $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$. [1 ma A 167 K B 334 K C 668 K D 334 000 K C		В	Li(g) —	→ Li ⁺ (g) + e ⁻	0	
D N(g) \longrightarrow N ⁺ (g) + e ⁻ A sample of 2.18 g of oxygen gas has a volume of 1870 cm ³ at a pressure of 101 kF. What is the temperature of the gas? The gas constant is $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$. [1 ma A 167 K B 334 K C 668 K D 334 000 K O		С	Mg ⁺ (g)	\rightarrow Mg ²⁺ (g) + e ⁻	0	
A sample of 2.18 g of oxygen gas has a volume of 1870 cm ³ at a pressure of 101 kF What is the temperature of the gas? The gas constant is $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$. 1 ma A 167 K B 334 K C 668 K D 334 000 K		D	N(g)	> N ⁺ (g) + e ⁻	0	
The gas constant is R = 8.31 J K ⁻¹ mol ⁻¹ . A 167 K B 334 K C 668 K D 334 000 K O	0 7	A sa Wha	mple of 2.18 g o t is the temperat	of oxygen gas has a rure of the gas?	volume of 1870 cm ³ at a	a pressure of 101 kF
A 167 K ○ B 334 K ○ C 668 K ○ D 334 000 K ○		The	gas constant is I	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$	1	[1 ma
B 334 K Image: Colorado service of the service of		Α	167 K	0		-
С 668 К D 334 000 К		В	334 K	0		
D 334 000 K 💿		С	668 K	0		
		D	334 000 K	0		

0 8	An ester is hydrolysed as shown by the following equation.	
	$RCOOR' + H_2O \longrightarrow RCOOH + R'OH$	
	What is the percentage yield of RCOOH when 0.50 g of RCOOH ($M_r = 100$) obtained from 1.0 g of RCOOR [/] ($M_r = 150$)?	is 1 mark]
	A 33% 🔿	
	B 50%	
	C 67%	
	D 75%	
09	A saturated aqueous solution of magnesium hydroxide contains 1.17×10^{-3} g c Mg(OH) ₂ in 100 cm ³ of solution. In this solution, the magnesium hydroxide is further dissociated into ions.	of ully
	What is the concentration of Mg ²⁺ (aq) ions in this solution?	1 mark]
	A $2.82 \times 10^{-2} \mathrm{mol} \mathrm{dm}^{-3}$	
	B $2.01 \times 10^{-3} \text{ mol dm}^{-3}$	
	C $2.82 \times 10^{-3} \text{ mol dm}^{-3}$	
	D 2.01 × 10^{-4} mol dm ⁻³	
	Turn over for the next question	

1 0	The	ne rate equation for the hydrogenation of ethene						
		$C_2H_4(g) + H_2(g) \longrightarrow C_2H_6(g)$						
	is I	Rate = $k[C_2H_4][H_2]$						
	At pre	a fixed temperature, the reaction mixture is compressed to triple the origin essure.	al					
	Wł	hat is the factor by which the rate of reaction changes?	[1 mark]					
	Α	6 💿						
	в	9 🔾						
	С	12 💿						
	D	27 💿						
1 1	Wł dis	hen one mole of ammonia is heated to a given temperature, 50% of the consociates and the following equilibrium is established.	mpound					
		$NH_3(g) \implies \frac{1}{2}N_2(g) + \frac{3}{2}H_2(g)$						
	Wł	hat is the total number of moles of gas present in this equilibrium mixture?	[1 mark]					
	Α	1.5 🔾						
	в	2.0 💿						
	С	2.5 🔾						
	D	3.0 🔾						
1 2	۱۸/۲	bish shange would alter the value of the equilibrium constant (K) for this re	action?					
	VVI	Then change would alter the value of the equilibrium constant (X_p) for this re	action					
	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ [1 mark]							
	Α	Increasing the total pressure of the system.						
	в	Increasing the concentration of sulfur trioxide.						
	С	Increasing the concentration of sulfur dioxide.						
	D	Increasing the temperature.						

1 3	What is the pH of a 0.020 mol dm^{-3} solution of a diprotic acid which is completely
	dissociated? [1 mark]
	A 1.00 O
	B 1.40 O
	C 1.70
	D 4.00
1 4	The acid dissociation constant, K_a , of a weak acid HA has the value 2.56 × 10 ⁻⁴ mol dm ⁻³
	What is the pH of a 4.25 × 10^{-3} mol dm ⁻³ solution of HA?
	[1 mark]
	A 5.96 ○
	B 3.59 O
	C 2.98 O
	D 2.37 \odot
1 5	Magnesium reacts with hydrochloric acid according to the following equation.
	Mg + 2HCl \longrightarrow MgCl ₂ + H ₂
	A student calculated the minimum volume of 2.56 mol dm ^{-3} hydrochloric acid required to react with an excess of magnesium to form 5.46 g of magnesium chloride (M_r = 95.3).
	Which of the following uses the correct standard form and the appropriate number
	[1 mark]
	• 4476 x 10^{-2} dm ³
	B $4.48 \times 10^{-2} \text{ dm}^3$
	C $4.50 \times 10^{-2} \text{ dm}^3$
	D $44.8 \times 10^{-3} \text{ dm}^3$

1 6	In wh	nich reaction is hydrogen acting as an oxidising agent?	[1 mark]
	Α	$Cl_2 + H_2 \longrightarrow 2HCl$	
	В	$(CH_3)_2CO + H_2 \longrightarrow (CH_3)_2CHOH$	
	С	$N_2 + 3H_2 \longrightarrow 2NH_3$	
	D	$2Na + H_2 \longrightarrow 2NaH$	
1 7	In wh	nich reaction is the metal oxidised?	[1 mark]
	Α	$2Cu^{2+} + 4l^- \longrightarrow 2Cul + l_2$	
	в	$[Fe(H_2O)_6]^{3+} + Cl^- \longrightarrow [Fe(H_2O)_5(Cl)]^{2+} + H_2O $	
	С	$[\operatorname{CoCl}_{4}]^{2-} + 6\operatorname{H}_{2}\operatorname{O} \longrightarrow [\operatorname{Co}(\operatorname{H}_{2}\operatorname{O})_{6}]^{2+} + 4\operatorname{Cl}^{-} \qquad \bigcirc$	
	D	$Ma + S \longrightarrow MaS $	
1 8	The f	following cell has an EMF of +0.46 V. $Cu Cu^{2+} Ag^{+} Ag$ th statement is correct about the operation of the cell?	[1 mark]
			[i markj
	Α	Metallic copper is oxidised by Ag^+ ions.	>
	В	The silver electrode has a negative polarity.	>
	С	The silver electrode gradually dissolves to form Ag^+ ions.	>
	D	Electrons flow from the silver electrode to the copper electrode copper el	

19	In ar of ac	n experiment to id queous hydrochlo	lentify a Gro ric acid acc	oup 2 metal (cording to the	X), 0.102 g of following equ	f X reacts with a uation.	in excess
		Х +	+ 2HCl —	\rightarrow XCl ₂ +	H ₂		
	The The	volume of hydrog gas constant is <i>R</i>	gen gas give ? = 8.31 J K	en off is 65 cr ^{_1} mol ^{_1} .	n ³ at 99 kPa	pressure and 30	03 K.
	Whi	ch is X?					[1 mark]
	Α	Barium	\bigcirc				
	В	Calcium	0				
	С	Magnesium	0				
	D	Strontium	0				
2 0	wha galli	t forms when a so um(III) nitrate?	olution of s	odium carbon	ate is added	to a solution of	[1 mark]
	Α	A white precipit	ate of galliu	m(III) carbon	ate.	0	
	в	A white precipit	ate of galliu	m(III) hydrox	ide.	0	
	С	A white precipit bubbles of carb	ate of galliu on dioxide.	m(III) carbon	ate and	0	
	D	A white precipit bubbles of carb	ate of galliu on dioxide.	m(III) hydrox	ide and	0	
2 1	Whi	ch compound give	es a colourl	ess solution v	when an exce	ess of dilute aqu	eous
	ami						[1 mark]
	Α	MgCl ₂					
	в	AgCl					
	С	CuCl ₂	>				
	D	AICl ₃					

S	n
2	υ

2 2	What is the final species produced when an excess of aqueous ammonia is adde to aqueous aluminium chloride?				
	io aqu		[1 mark]		
	Α	[Al(NH ₃) ₆] ³⁺			
	в	$[Al(OH)_3(H_2O)_3] \bigcirc$			
	С	$[Al(OH)_4(H_2O)_2]^-$			
	D	$[Al(OH)(H_2O)_5]^{2+}$			
2 3	The fo	ollowing equation represents the oxidation of vanadium(IV) ions by			
	mang	anate(VII) ions in acid solution.			
		$5V^{4+} + MnO_4^- + 8H^+ \longrightarrow 5V^{5+} + Mn^{2+} + 4H_2O$			
	What	volume of 0.020 mol dm ^{-3} KMnO ₄ solution is required to oxidise com	pletely a		
	Solutio		[1 mark]		
	Α	10 cm ³			
	в	25 cm ³			
	с	50 cm ³			
	D	100 cm ³			
2 4	How r	many isomers have the molecular formula C_5H_{12} ?	[1 mark]		
	R	3			
	c				
	U	5			
L					

2 5	Whic	ch molecule is not produced when ethane reacts with bromine in the p	resence
	orui		[1 mark]
	Α	$C_2H_4Br_2$	
	в	HBr 💿	
	С	H ₂	
	D	C ₄ H ₁₀	
2 6	How	many structural isomers have the molecular formula $C_4H_9Br?$	[1 mark]
	Α	2 💿	
	в	3 🔾	
	С	4 💿	
	D	5 💿	
	\\/ba	t is the major product of the reaction between but 1 and DPr?	
2 7	(D is	$^{\circ}$ deuterium and represents 2 H)	[1 mark]
	٨		
	B		
	C		
	U		
28	Why	are fluoroalkanes unreactive?	
	••••		[1 mark]
	Α	Fluorine is highly electronegative.	
	в	The F^- ion is very stable.	
	С	They are polar molecules.	
	D	The C–F bond is very strong.	

29	Whic	ch alcohol could not be produced by the reduction of an aldehyde or a	ketone? [1 mark]
	Α	2-methylbutan-1-ol	
	В	2-methylbutan-2-ol	
	С	3-methylbutan-1-ol	
	D	3-methylbutan-2-ol	
30	Whic	ch compound forms optically active compounds on reduction?	[1 mark]
	Α	$CH_3CH_2C(CH_3)=CHCH_3$	
	В	$CH_3CH_2C(CH_3)=CH_2$	
	C		
	D	CH ₃ CH ₂ COCH ₃	
3 1	How	many secondary amines have the molecular formula $C_4H_{11}N?$	[1 mark]
	Α	2 💿	
	В	3 💿	
	C	4 O	
	U	3	
32	Whic	ch compound has the highest boiling point?	[1 mark]
	A	G_2H_4	
	В		
	U		

3 5	Which amine has only three peaks in its proton NMR spectrum?							
	Α	Methylamine	0					
	В	Trimethylamine	\bigcirc					
	С	Diethylamine	\circ					
	D	Propylamine	0					
			END OF QUESTIONS					